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Abstract

This thesis investigates the numerical treatment of MHD boundary layer flow of

Carreau fluid with thermal radiation and chemical reaction. The thermal con-

ductivity and viscosity is considered to vary linearly with temperature. By ap-

plying some suitable similarity transformations, the constitutive equations are

transformed to a set of ordinary differential equations. The obtained problem is

solved analytically by shooting method. The impact of magnetic parameter M ,

Prandtl number Pr, Lewis number Le, thermal radiation parameter R and chem-

ical reaction parameter γ on the skin friction coefficient and Nusselt number are

studied and presented in tabular forms. An increment in the chemical reaction

parameter leads to a decrement in the concentration profile. The effect of different

fluid parameters such as the suction parameter S, Prandtl number Pr and Lewis

number Le on the velocity, temperature and concentration profiles are presented

graphically.
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Chapter 1

Introduction

Over the past few years, study of heat transfer and flow over a stretchable sheet has

gained considerable importance in the scientists’ community. Many scientists have

given much attention to this field due to its wide range of applications in industrial

and engineering process. Production of rubber, colloidal suspension of fluid, glass

production, spinning of metal, use of geothermal energy and plasma studies are

some examples of its applications. Likewise, nanofluids are a new class of fluids

manufactured by dispersion of (nanoparticles, nanofibers, nanotubes, nanowires,

nanorods, nanosheets, or droplets) of nanometer-sized materials into base fluids. In

other words, nanofluids are nanoscale colloidal suspensions containing condensed

nanomaterials.

They are two-phase systems with one phase (solid phase) in another (liquid phase).

Nanofluids have been found to possess enhanced thermophysical properties such

as thermal conductivity, thermal diffusivity, viscosity, and convective rate of heat

transfer coefficients compared to those of base fluids like oil or water. It has

demonstrated great potential applications in many fields. For a two-phase system,

there are some important issues we have to face. One of the most challenging

issues is the stability of nanofluids.

For this purpose, Hiemenz [1] studied a two dimensional stagnation flow to a sta-

tionary flat plate in the case of an orthogonal flow. Erickson et al. [2] explained

the boundary layer incompressible fluid flow over an inextensible at surface with

1



Introduction 2

uniform velocity. Olajuwan [3] examined the magnetohydrodynamics flow of Car-

reau fluid with transfer of mass and heat through a porous medium. Hayat et al.

[4] solved the MHD peristaltic flow of Carreau liquid in a channel of various wave-

forms. Akbar et al. [5] studied the numerical simulation of 2-D tangent hyperbolic

flow of fluid through an extending sheet placed in a magnetic field. Suneetha and

Gangadhar [6] extended the work of Akbar et al. [5] with convective boundary

conditions and MHD effect. Statistical analysis of heat and mass transfer to the

Carreau MHD flow by the non-daracy decomposition and chemical reactions was

observed by Abou Zeid [7]. The MHD peristaltic flow of Carreau nanoliquid in an

asymmetric channel was researched by Akram et al. [8].

Akbar and Nadeem [9] also investigate the peristaltic flow of Carreau fluid in a

uniform tube, taking into account the long wavelengths in the presence of heat and

mass transfer. Nandeppanavar and his colleagues [10] studied, in the presence of

partial slip, the flow and heat transfer of MHD fluids to the impermeable stretch-

ing surface with variable thermal conductivity and non-uniform heat sources or

immersion. Cortell [11] dissected the heat transfer rate and in- compressible vis-

cid flow on a nonlinear stretchable surface numerically. Vyas [12] investigated the

impact of thermal radiation and dissipation on the flow of the boundary layer of

the MHD and the transfer of heat through the nonlinear stretching surface. Ali

[13] demonstrated the effect of thermal boundary layer suction and injection on

the stretching surface of the power law. Sandeep et al. [14] studied the radiative

and chemical reaction through semiconductor vertical porous panels in an unstable

flow with the properties of heat transfer. Shen et al. [15] investigate the problem

of MHD flow of heat from one place to another place close to the stagnation point

with respect to the leaky leaf on the grid at a slip speed. Analytical solutions using

the spectral Galerkin Legend process throughout the viscous fluid over a nonlinear

stretchable layer, velocity and temperature fields are determined by Akyildiz and

Siginer. [16]. The effect of partial slips on the boundary layer and the stagnation

point flow of incompressible liquids with the rate of heat transfer near the shrink-

ing surface was studied by Bhattacharyya et al. [17]. Chen [18] considered the

impact of viscous dissipation on rate of heat transfer in a non-Newtonian liquid
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foil over an unstable stretching surface. Abdou and El-Zahar [19] demonstrated

the impact of heat dependent viscosity on heat transfer over a continuous moving

surface with variable internal heat generation in micropolar fluids. The impact of

thermal conductivity and variable viscosity on the micropolar fluid problem in the

presence of suction or injection was investigated by Salem and Odda [20]. The ef-

fect of thermal radiation on a volatile flow of the board layer has been numerically

resolved [21] by Uwanta and Usman in the presence of a magnetic chip by means

of a variable viscosity and a thermic conductivity of the micropolitan liquid. Abd

El-Hakiem et al. have studied the effect of variable viscousness on natural micro

polar fluid convection of MHD [22] as a linear temperature feature and assumes

the viscosity of fluid. The influence of different types of fluid flow over a stretching

sheet in various geometries was studied in [23–36].

Observed the impacts of thermo diffusion over stagnation point flow of nanofluid

in the presence of stretchable sheet with applied magnetic field parameter by using

similarity transformations. These are very recent experiments with heat and mass

transfers in fluid dynamics with steady and unsteady flows over thin film. The

purpose of this thesis is to model and analyze the MHD Carreau fluid through a

stretching surface with variable viscosity and thermal conductivity in the presence

of heat transfer rates under convective boundary conditions. Devi and Kandasmy

[37] analyzed the impact of homogenous chemical reaction with heat and mass

transfer laminar flow along with semi-infinite horizontal plate.

Chamkha and Rashad [38] talked about the impact of chemical reaction on MHD

flow in the presence of heat generation or absorption of uniform vertical permeable

surface. Mabood at al. [39] presented MHD heat flow and mass transfer of nanoflu-

ids with radiation, viscous dissipation and chemical reaction in the porous medium.

Raptis and Perdikis [40] observed the viscid flow on a nonlinear stretchable sheet

in the presence of magnetic field parameter by applying shooting technique. The

impact of slip boundary condition on heat transfer rate were investigated by Das

et al. [41]. Through their study, they found that in the presence of thermal slip

condition or hydrodynamic suction, injection parameter has large impact on sur-

face temperature of plate.The thermal radiation effect becomes intensified at high
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absolute temperature levels due to basic difference between radiation , convection

and conduction energyexchange mechanisms.

1.1 Thesis Contributions

The major objective of this research work is to execute the impacts of Thermal

Radiation and Chemical Reaction on MHD Carreau Fluid Flow over a Stretch-

ing Sheet. The set of nonlinear partial differential equations are transformed into

ODEs and numerically solved by utilizing shooting method. Impacts of distinct

parameters on the velocity, temperature and concentration distributions are ex-

pressed in tables and graphs.

1.2 Thesis Outlines

This thesis is classified into four main chapters:

Chapter 2 contains the basic definitions and terminologies, which are useful to

understand the concepts discussed later on.

Chapter 3 contains the complete review of [42] which considers the analysis of

MHD Carreau fluid flow over a stretching permeable sheet with variable viscosity

and thermal conductivity.

Chapter 4 is an extension of the model discussed in [42] by including the impacts

of thermal radiation and chemical reaction.

Chapter 5 includes the summary of the entire study.

All the references used in this thesis are listed in Bibliography.



Chapter 2

Basic Terminologies and

Governing Equations

In this chapter, we will discuss some basic definitions, terminologies, basic laws,

and dimensionless numbers, which will be helpful in conducting the work for the

next chapters.

This chapter contains few essentials definitions and laws of fluid dynamics which

will be used in the upcoming discussions.

2.1 Basic Concepts

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [43]

Definition 2.1.2 (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.” [44]

5



Basic Terminologies 6

Definition 2.1.3 (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [44]

Definition 2.1.4 (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluids in

motion, that branch of science is called fluid dynamics.” [44]

Definition 2.1.5 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid.

Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [44]

Definition 2.1.6 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called ‘nu’.

Mathematically,

ν =
µ

ρ
.” [44]

Definition 2.1.7 (Ideal Fluid)

“A fluid which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [44]

Definition 2.1.8 (Real Fluid)

“A fluid which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [44]
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Definition 2.1.9 (Newtonian Fluid)

“A real fluid in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [44]

Definition 2.1.10 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a Non-Newtonian fluid.” [44]

Definition 2.1.11 (Magnetohydrodynamics)

“Magnetohydrodynamics is concerned with the mutual interaction of fluid flow

and magnetic fields. The fluids in question must be electrically conducting and

non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas) and

strong electrolytes.” [45]

2.2 Types of Flow

Definition 2.2.1 (Laminar Flow)

“Laminar flow is defined as that type of flow in which the fluid particles move

along well-defined paths or stream line and all the stream-lines are straight and

parallel.” [44]

Definition 2.2.2 (Turbulent Flow)

“Turbulent flow is that type of flow in which the fluid particles move in a zig-zag

way. Due to the movement of fluid particles in a zig-zag way.” [44]

Definition 2.2.3 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,
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Mathematically,

ρ 6= k,

where k is constant.” [44]

Definition 2.2.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [44]

Definition 2.2.5 (Internal Flow)

“Flows completely bounded by solid surfaces are called internal or duct flows.” [43]

Definition 2.2.6 (External Flow)

“Flows over bodies immersed in an unbounded fluid are said to be an external

flow.” [43]

Definition 2.2.7 (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at

any point in open channel flow donot change with respect to time, the flow is said

to be steady flow. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [44]

Definition 2.2.8 (Unsteady Flow)

“If at any point in open channel flow, the velocity of flow, depth of flow or rate of
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flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
6= 0,

where Q is any fluid property.” [44]

2.3 Heat Transfer

Definition 2.3.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [46]

Definition 2.3.2 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.” [46]

Definition 2.3.3 (Convection) “Convection heat transfer is usually defined as

energy transport effected by the motion of a fluid. The convection heat transfer

between two dissimilar media is governed by Newton’s law of cooling.” [46]

Definition 2.3.4 (Force Convection)

“Forced convection heat transfer is induced by forcing a liquid, or gas, over a hot

body or surface.” [47]

Definition 2.3.5 (Natural Convection)

“Natural convection is generated by the density difference induced by the temper-

ature differences within a fluid system and the small density variations present in
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these types of flows.” [47]

Definition 2.3.6 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium.” [46]

Definition 2.3.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [46]

Definition 2.3.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as:

α =
κ

ρCp
,

where α is the thermal diffusivity, κ is the thermal conductivity, ρ is the density

and Cp is the specific heat at constant pressure.” [48]

2.4 Dimensionless Numbers

Definition 2.4.1 (Prandtl Number)

“The Prandtl number is the connecting link between the velocity field and the

temperature field. The Prandtl number is dimensionless Mathematically,

Pr =
ν

α
=

µ/ρ

κ/ρCp
=
µCp
κ
.” [49]
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Definition 2.4.2 (Skin Friction Coefficient)

“The steady flow of an incompressible gas or liquid in a long pipe of internal D.

The mean velocity is denoted by uw. The skin friction coefficient can be defined

as

Cf =
2τ0
ρu2w

,

where τ0 denotes the wall shear stress and ρ is the density.” [50]

Definition 2.4.3 (Nusselt Number)

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu =
qL

κ
,

where q stands for the convection heat transfer, L for the characteristic length and

κ stands for thermal conductivity.” [47]

Definition 2.4.4 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid . Mathematically,

Re =
LV

ν
,

where V denotes the free stream velocity, L is the characteristics length and ν is

kinematic viscosity.” [44]

2.5 Governings Law

Definition 2.5.1 (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change
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of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

∂ρ

∂t
+∇.(ρu) = 0.” [46]

Definition 2.5.2 (Conservation of Momentum)

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newton’s Third Law of action and reaction

governs the internal forces. Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.” [46]

Definition 2.5.3 (Law of Conservation of Energy)

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ,

where φ is a dissipation function.” [46]

Definition 2.5.4 (Newton’s Law of Viscosity)

“It states that the shear stress τ on a fluid element layer is proportional to the

rate of shear strain. The constant of proportionally is called coefficient of viscosity.

Mathematically it is expressed as

τ = µ
du

dy
,

Fluids which obey the above relation are known as Newtonian fluids and the fluids

which do not obey the above relation are called non-Newtonian fluids.” [46]



Chapter 3

Analysis of MHD Carreau Fluid

Flow over a Stretching Permeable

Sheet with Variable Viscosity and

Thermal Conductivity

3.1 Introduction

In this chapter, the observations on MHD incompressible viscous laminar fluid flow

on a nonlinearly stretchable sheet with the impacts of velocity and thermal wall slip

parameters have been accomplished. The set of equations for energy, momentum

and concentration are attained by utilizing the boundary layer approximation.

Furthermore, the governing coupled nonlinear PDEs are transmuted into ODEs

by using the appropriate transformations. A numerical technique based on the

shooting method is used for the solution of first order ODEs. At the end of

this chapter, the numerical solution for different parameters are considered. The

impact of these parameters on the skin friction coefficient, Nusselt and sherwood

numbers, is also analyzed. The tables and graphs are shown which are obtained

through this investigation. This chapter presents a detailed review of [42]

13
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3.2 Mathematical Modeling

Figure 3.1: Systematic representation of physical model.

Assume a uniform 2-D incompressible viscid flow of an electrically conducting fluid

on a nonlinearly stretchable sheet. Meanwhile, the plate has been stretched with

the velocity uw = axm along x-direction. Here Tw is the wall temperature and Cw

is the nanoparticles concentration at the stretching sheet, T∞ is the free stream

temperature and C∞ is the Ambient concentration. The flow is explained by

considering the two dimensional governing equations comprising of the continuity,

momentum, energy and concentration equations.

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y

(
µ
∂u

∂y

)
+ 3ν

n− 1

2
Γ2

(
∂u

∂y

)2
∂2u

∂y2
+
σJ2

ρ
(ue − u)

+ ue
∂ue
∂x

, (3.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

∂

∂y

(
k
∂T

∂y

)
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
, (3.4)
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where µ stand for the dynamic viscosity and k for thermal conductivity. Moreover

σ, ν and ρ denote the electrical conductivity, kinematic viscosity and fluid density

respectively. The acceleration gravity is g. Cp stand for specific heat capacity. T

stand for fluid temperature, T∞ denotes the free stream temperature, D stand for

diffusion coefficient, Γ stand for time constant, n stand for power law index and

J stand for magnetic field.

µ(T ) = µ∗[N1 + h1(T∞ − T )], k(T ) = k∗[N2 + h2(T − Tw)]. (3.5)

In the above equation, µ∗ and k∗ represent the effect of viscosity and thermal

conductivity, whereas h1, h2, N1 and N2 are some positive constants. In addition,

N1 and N2 are assigned the value 1.

The associated boundary conditions are taken as:

u = uw(x) = axm, v = vw(x),
∂T

∂y
= −qw(x)

k
, C = Cw, at y = 0,

u→ ue(x) = bxm, T → T∞, C → C∞, at y →∞,

 (3.6)

Here νw stand for injection/suction velocity and qw(x) is the surface heat flux.

The following similarity transformation.

θ(ζ) =
T − Tw
T∞ − Tw

,

φ(ζ) =
C − C∞
Cw − C∞

,

ψ = (bv)
1
2x

m+1
2 f(ζ),

ζ =

(
b

v

) 1
2

yx
m−1

2 ,


(3.7)

where ψ stand for the stream function. The complete procedure for the conversion

of (3.1)-(3.4) into the dimensionless form has been discussed below.

• ζ =

(
b

ν

) 1
2

yx
m−1

2 . (3.8)
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• ∂ζ

∂x
=

∂

∂x

(
b

ν

) 1
2

yx
m−1

2 .

=

(
b

ν

) 1
2 m− 1

2
x

m−3
2 y. (3.9)

• ∂ζ

∂y
=

(
b

ν

) 1
2

x
m−1

2 . (3.10)

• u =
∂ψ

∂y
,

=
∂

∂y

(
(bν)

1
2x

m+1
2 f(ζ)

)
,

=
(

(bν)
1
2x

m+1
2 f ′(ζ)

) ∂ζ
∂y
,

=
(

(bν)
1
2x

m+1
2 f ′(ζ)

) ∂

∂y

(
b

ν

) 1
2

x
m−1

2 y,

=
(

(bν)
1
2x

m+1
2 f ′(ζ)

)( b
ν

) 1
2

x
m−1

2 ,

= bxmf ′(ζ). (3.11)

• v = −∂ψ
∂x

,

= − ∂

∂x

(
(bν)

1
2x

m+1
2 f(ζ)

)
,

= −(bν)
1
2x

m+1
2 f ′(ζ)

m− 1

2

(
b

ν

) 1
2

x
m−3

2 y − (bν)
1
2
m+ 1

2
f(ζ)x

m−1
2 ,

= −(bν)
1
2x

m−1
2

[
m− 1

2
(ζ)f ′(ζ) +

m+ 1

2
f(ζ)

]
. (3.12)

• ∂u

∂x
=

∂

∂x
(bxmf ′(ζ)) ,

= bxmf ′′(ζ)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 y + bmxm−1f ′(ζ),

=

(
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ) + bmxm−1f ′(ζ). (3.13)

• ∂v

∂y
= − ∂

∂y
(bν)

1
2x

m−1
2

[
m− 1

2
(ζ)f ′(ζ) +

m+ 1

2
f(ζ)

]
,

= −(bν)
1
2x

m−1
2

(
m+ 1

2
f ′(ζ)(

b

ν
)
1
2x

m−1
2

)

− (bν)
1
2x

m−1
2
m− 1

2

(
b

ν

) 1
2

yx
m−1

2 f ′′(ζ)

(
b

ν

) 1
2

x
m−1

2

− (bν)
1
2x

m−1
2
m− 1

2
f ′(ζ)

(
b

ν

1
2

)
x

m−1
2 ,
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= −bm+ 1

2
xm−1f ′(ζ)−

(
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ)

− bm− 1

2
xm−1f ′(ζ),

= −bxm−1f ′(ζ)

(
m+ 1

2
+
m− 1

2

)
−

(
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ),

= −bmxm−1f ′(ζ)−

(
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ). (3.14)

Equation (3.1) is very easily satisfied by using the equations (3.13)-(3.14), as

follows:

∂u

∂x
+
∂v

∂y
=

(
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ) + bmxm−1f ′(ζ)

− bmxm−1f ′(ζ)−

(
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ),

∂u

∂x
+
∂v

∂y
= 0.

Now, for the momentum equation (3.2) the following derivatives are required.

• u
∂u

∂x
= (bxmf ′(ζ))

((
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ) + bmxm−1f ′(ζ)

)
,

=

(
b

5
2

ν
1
2

)
x

5m−3
2 y

m− 1

2
f ′(ζ)f ′′(ζ) + b2mx2m−1f ′2(ζ). (3.15)

• ∂u

∂y
=

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′(ζ).

• v
∂u

∂y
= −(bν)

1
2x

m−1
2

[
m− 1

2
(ζ)f ′(ζ) +

m+ 1

2
f(ζ)

]
,

= −(bν)
1
2x

m−1
2

[
m− 1

2

(
b

ν

) 1
2

yx
m−1

2 f ′(ζ) +
m+ 1

2
f(ζ)

]
b

3
2

ν
1
2

x
3m−1

2 f ′′(ζ),

= −b2m+ 1

2
x2m−1f(ζ)f ′′(ζ)− b

5
2

ν
1
2

m− 1

2
x

5m−3
2 yf ′(ζ)f ′′(ζ). (3.16)

• µ(T ) = µ∗[N1 + h1(T∞ − T )].

µ(T ) = µ∗N1 + µ∗h1(T∞ − T ).
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• µ
∂u

∂y
= µ∗[N1 + h1(T∞ − T )]

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′(ζ) .

• θ(ζ) =
T − Tw
T∞ − Tw

.

T = (T∞ − Tw)θ(ζ) + Tw.

• µ
∂u

∂y
= (µ∗N1 + µ∗h1(T∞ − Tm)(1− θ(ζ)))

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′(ζ),

= µ∗N1

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′(ζ)

+ µ∗h1(T∞ − Tw)(1− θ(ζ))

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′(ζ).

• ∂

∂y

(
µ
∂u

∂y

)
=

∂

∂y

(
µ∗N1

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′(ζ)

)

+
∂

∂y

(
µ∗h1(T∞ − Tw)(1− θ(ζ))

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′(ζ)

)
,

= µ∗N1

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′′(ζ)

(
b

1
2

ν
1
2

)
x

m−1
2

+ µ∗h1(T∞ − Tw)

(
b

3
2

ν
1
2

)
x

3m−1
2 f ′′′(ζ)

(
b

1
2

ν
1
2

)
x

m−1
2

− µ∗h1(T∞ − Tw)

(
b

3
2

ν
1
2

)(
b

1
2

ν
1
2

)
x

3m−1
2 x

m−1
2 (f ′′′(ζ)θ(ζ) + f ′′(ζ)θ′(ζ)),

= µ∗N1

(
b2

ν

)
x2m−1f ′′′(ζ) + µ∗h1(T∞ − Tw)

(
b2

ν

)
x2m−1f ′′′(ζ)

− µ∗h1(T∞ − Tw)

(
b2

ν

)
x2m−1(f ′′′(ζ)θ(ζ) + f ′′(ζ)θ′(ζ)).

• 1

ρ

∂

∂y
(µ
∂u

∂y
) = µ∗N1

(
b2

νρ

)
x2m−1f ′′′(ζ) + µ∗h1(T∞ − Tw)

(
b2

νρ

)
x2m−1

f ′′′(ζ)− µ∗h1(T∞ − Tw)

(
b2

νρ

)
x2m−1(f ′′′(ζ)θ(ζ) + f ′′(ζ)θ′(ζ)). (3.17)

•
(
∂u

∂y

)2

=

(
b3

ν

)
x3m−1f ′′2(ζ).

∂2u

∂y2
=

∂2

∂y2
(bxmf ′(ζ)),

=
b

3
2

ν
1
2

x
3m−1

2 f ′′′(ζ)
b

1
2

ν
1
2

x
m−1

2 ,

=

(
b2

ν

)
x2m−1f ′′′(ζ).
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•
(
∂2u

∂y2

)(
∂u

∂y

)2

=

(
b5

ν2

)
x5m−2f ′′2(ζ)f ′′′(ζ).

3ν
n− 1

2
Γ2

(
∂2u

∂y2

)(
∂u

∂y

)2

= 3ν
n− 1

2
Γ2

(
b5

ν2

)
x5m−2f ′′2(ζ)f ′′′(ζ). (3.18)

• ue = bxm.

ue − u = bxm − bxmf ′(ζ),

ue − u = bxm(1− f ′(ζ)).

• σ(J2)

ρ
(ue − u) =

σ(J2)

ρ
bxm(1− f ′(ζ)). (3.19)

• ∂ue
∂x

=
∂

∂x
(bxm),

= bmxm−1.

• ue
∂ue
∂x

= bxmbmxm−1,

= b2mx2m−1. (3.20)

Using equations (3.15)-(3.20) in equation (3.2), we get

(
b

5
2

ν
1
2

)
x

5m−3
2 y

m− 1

2
f ′(ζ)f ′′(ζ) + b2mx2m−1f ′2(ζ)− b2m+ 1

2
x2m−1f(ζ)f ′′(ζ)

−

(
b

5
2

ν
1
2

)
m− 1

2
x

5m−3
2 yf ′(ζ)f ′′(ζ) =

(
1

ρ

)
µ∗N1

(
b2

ν

)
x2m−1f ′′′(ζ)

+ µ∗h1(T∞ − Tw)

(
b2

ν

)
x2m−1f ′′′(ζ)− µ∗h1(T∞ − Tw)

(
b2

ν

)
x2m−1

(f ′′′(ζ)θ(ζ) + f ′′(ζ)θ′(ζ)) +

(
3ν
n− 1

2
Γ2

(
b5

ν2

)
x5m−2f ′′2(ζ)f ′′′(ζ)

)
+

(
σ(J2)

ρ
bxm(1− f ′(ζ))

)
+ b2mx2m−1,

b2mx2m−1(
1
ρ

)
µ∗N1

(
b2

ν

)
x2m−1

f ′2(ζ)−
b2m+1

2
x2m−1(

1
ρ

)
µ∗N1

(
b2

ν

)
x2m−1

f(ζ)f ′′(ζ) = f ′′′(ζ)

+
µ∗h1(T∞ − Tw)

(
b2

ν

)
x2m−1(

1
ρ

)
µ∗N1

(
b2

ν

)
x2m−1

f ′′′(ζ)−
µ∗h1(T∞ − Tw)

(
b2

ν

)
x2m−1(

1
ρ

)
µ∗N1

(
b2

ν

)
x2m−1

(f ′′′(ζ)θ(ζ) + f ′′(ζ)θ′(ζ)) +
3ν n−1

2
Γ2
(
b5

ν2

)
x5m−2(

1
ρ

)
µ∗N1

(
b2

ν

)
x2m−1

f ′′′(ζ)f ′′2(ζ)
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+

σ(J2)
ρ
bxm(

1
ρ

)
µ∗N1

(
b2

ν

)
x2m−1

(1− f ′(ζ)) +
b2mx2m−1(

1
ρ

)
µ∗N1

(
b2

ν

)
x2m−1

,

f ′′′(ζ)− (ρν)
b2mx2m−1

µ∗N1b2x2m−1
f ′2(ζ) +

(ρν)b2m+1
2
x2m−1

µ∗N1b2x2m−1
f(ζ)f ′′(ζ)

+
(ρν)µ∗h1(T∞ − Tw)b2x2m−1

(ρν)µ∗N1b2x2m−1
f ′′′(ζ)

− (ρν)µ∗h1(T∞ − Tw)b2x2m−1

(ρν)µ∗N1b2x2m−1
(f ′′′(ζ)θ(ζ) + f ′′(ζ)θ′(ζ))

+
(3ν2ρ)(n− 1)Γ2b5x5m−2

2ν2µ∗N1b2x2m−1
f ′′2(ζ)f ′′′(ζ)

+
(ρν)σJ2bxm

ρµ∗N1b2x2m−1
(1− f ′(ζ)) +

(ρν)b2mx2m−1

µ∗N1b2x2m−1
= 0,

f ′′′(ζ)− (ρν)m

µ
f ′2(ζ) +

(ρν)m+1
2

µ
f(ζ)f ′′(ζ) +

h1
N1

(T∞ − Tw)f ′′′(ζ)

− h1
N1

(T∞ − Tw)(f ′′′(ζ)θ(ζ) + f ′′(ζ)θ′(ζ)) +
3(n− 1)Γ2b3x3m−1

2ν
f ′′2(ζ)f ′′′(ζ)

+
σJ2

ρb
x1−m(1− f ′(ζ)) +

(ρν)m

µ
= 0,

f ′′′(ζ) +m(1− f ′2(ζ)) +
m+ 1

2
f(ζ)f ′′(ζ) +

h1
N1

(T∞ − Tw)f ′′′(ζ)

− h1
N1

(T∞ − Tw)(f ′′(ζ)θ′(ζ) + f ′′′(ζ)θ(ζ)) +
3(n− 1)Γ2b3x3m−1

2ν
f ′′2(ζ)f ′′′(ζ)

+
σJ2

ρb
x1−m(1− f ′(ζ)) = 0,

f ′′′(ζ) +m(1− f ′2(ζ)) +
m+ 1

2
f(ζ)f ′′(ζ) + ξf ′′′(ζ)

− ξ(f ′′(ζ)θ′(ζ) + f ′′′(ζ)θ(ζ)) +
3

2
(n− 1)We2f ′′2(ζ)f ′′′(ζ)

+M2(1− f ′(ζ)) = 0. (3.21)

The following derivatives will help to convert the equation (3.3) into the dimen-

sionless form.

• T = (T∞ − Tw)θ(ζ) + Tw.

• ∂T

∂x
=

∂

∂x
((T∞ − Tw)θ(ζ) + Tw),

= (T∞ − Tw)θ′(ζ)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 y,

= (T∞ − Tw)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 yθ′(ζ).
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• ∂T

∂y
=

∂

∂y
((T∞ − Tw)θ(ζ) + Tw),

= (T∞ − Tw)θ′(ζ)

(
b

ν

) 1
2

x
m−1

2 ,

= (T∞ − Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ).

• u
∂T

∂x
= (bxmf ′(ζ))((T∞ − Tw)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 yθ′(ζ)),

=

(
b

3
2

ν
1
2

)
m− 1

2
(T∞ − Tw)x

3m−3
2 yf ′(ζ)θ′(ζ). (3.22)

• v
∂T

∂y
= −(bν)

1
2x

m−1
2

[
m− 1

2
(ζ)f ′(ζ) +

m+ 1

2
f(ζ)

]
((T∞ − Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ)),

= −bm+ 1

2
(T∞ − Tw)xm−1f(ζ)θ′(ζ)

− bm− 1

2

(
b

ν

) 1
2

(T∞ − Tw)xm−1yf ′(ζ)θ′(ζ),

= −bm+ 1

2
(T∞ − Tw)xm−1f(ζ)θ′(ζ)

− m− 1

2

(
b

3
2

ν
1
2

)
(T∞ − Tw)x

3m−3
2 yf ′(ζ)θ′(ζ). (3.23)

• k(T ) = k∗[N2 + h2(T − Tw)],

= k∗[N2 + h2((T∞ − Tw)θ(ζ) + Tm − Tw)],

= k∗[N2 + h2(T∞ − Tw)θ(ζ)].

• k(T )
∂T

∂y
= (k∗N2 + k∗h2(T∞ − Tw)θ(ζ))((T∞ − Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ)),

= k∗N2(T∞ − Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ) + k∗h2(T∞ − Tw)2
(
b

ν

) 1
2

x
m−1

2 θ(ζ)θ′(ζ).

• ∂

∂y
(k(T )

∂T

∂y
) =

∂

∂y

(
k∗N2(T∞− Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ)

)

+
∂

∂y

(
k∗h2(T∞ − Tw)2

(
b

ν

) 1
2

x
m−1

2 θ(ζ)θ′(ζ)

)
,

= k∗N2(T∞ − Tw)

(
b

ν

)
xm−1θ′′(ζ)

+ k∗h2(T∞ − Tw)2

(
b

ν

)
xm−1

(
θ′2(ζ) + θ(ζ)θ′′(ζ)

)
.
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1

ρCp

∂

∂y
(k(T )

∂T

∂y
) = k∗N2(T∞ − Tw)

(
b

νρCp

)
xm−1θ′′(ζ)

+ k∗h2(T∞ − Tw)2
(

b

νρCp

)
xm−1

(
θ′2(ζ) + θ(ζ)θ′′(ζ)

)
. (3.24)

Using (3.22)-(3.24), equation (3.3) becomes:

(
b

3
2

ν
1
2

)
m− 1

2
(T∞ − Tw)x

3m−3
2 yf ′(ζ)θ′(ζ)

− bm+ 1

2
(T∞ − Tw)xm−1f(ζ)θ′(ζ)

− m− 1

2

(
b

3
2

ν
1
2

)
(T∞ − Tw)x

3m−3
2 yf ′(ζ)θ′(ζ)

= k∗N2(T∞ − Tw)

(
b

νρCp

)
xm−1θ′′(ζ)

+ k∗h2(T∞ − Tw)2
(

b

νρCp

)
xm−1

(
θ′2(ζ) + θ(ζ)θ′′(ζ)

)
,

− bm+ 1

2
(T∞ − Tw)xm−1f(ζ)θ′(ζ)

=
1

ρCp
k∗N2(T∞ − Tw)

(
b

ν

)
xm−1θ′′(ζ)

+
1

ρCp
k∗h2(T∞ − Tw)2

(
b

ν

)
xm−1

(
θ′2(ζ) + θ(ζ)θ′′(ζ)

)
,

θ′′(ζ) +
b(T∞ − Tw)xm−1m+1

2
1
ρCp

k∗N2(T∞ − Tw) b
ν
xm−1

f(ζ)θ′(ζ)

+

1
ρCp

k∗h2(T∞ − Tw)2 b
ν
xm−1

1
ρCp

k∗N2(T∞ − Tw) b
ν
xm−1

(θ(ζ)θ′′(ζ) + θ′2(ζ)) = 0

θ′′(ζ) +
µCp
k∗N2

m+ 1

2
f(ζ)θ′(ζ) +

h2
N2

(T∞ − Tw)
(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
= 0,

θ′′(ζ) + Pr
m+ 1

2
f(ζ)θ′(ζ) + ε

(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
= 0. (3.25)

To convert the equation (3.4) into ordinary differential form, the following proce-

dure has been carried out.

• φ(ζ) =
C − C∞
Cw − C∞

,

C = (Cw − C∞)φ(ζ) + C∞.

• ∂C

∂x
=

∂

∂x
((Cw − C∞)φ(ζ) + C∞) ,
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= (Cw − C∞)φ′(ζ)

(
b

ν

) 1
2

y
m− 1

2
x

m−3
2 ,

= (Cw − C∞)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 yφ′(ζ).

• u
∂C

∂x
= (bxmf ′(ζ))(Cw − C∞)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 yφ′(ζ),

= (Cw − C∞)
m− 1

2

(
b

3
2

ν
1
2

)
x

3m−3
2 yf ′(ζ)φ′(ζ). (3.26)

• ∂C

∂y
=

∂

∂y
((Cw − C∞)φ(ζ) + C∞),

= (Cw − C∞)φ′′(ζ)

(
b

ν

)
xm−1,

= (Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ).

• v
∂C

∂y
= −b(Cw − C∞)

m+ 1

2
xm−1f(ζ)φ′(ζ)

− (Cw − C∞)
m− 1

2

(
b

3
2

ν
1
2

)
x

3m−3
2 yf ′(ζ)φ′(ζ). (3.27)

• ∂2C

∂y2
= (Cw − C∞)φ′′(ζ)

(
b

ν

)
xm−1,

= (Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ).

• D
∂2C

∂y2
= D(Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ). (3.28)

Using equations (3.26)-(3.28) in equation (3.4), we get

((Cw − C∞)
m− 1

2

(
b

3
2

ν
1
2

)
x

3m−3
2 yf ′(ζ)φ′(ζ))

− b(Cw − C∞)
m+ 1

2
xm−1f(ζ)φ′(ζ)

− (Cw − C∞)
m− 1

2

(
b

3
2

ν
1
2

)
x

3m−3
2 yf ′(ζ)φ′(ζ)

= D(Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ),

φ′′(ζ) +
b(Cw − C∞)m+1

2
xm−1

D(Cw − C∞)
(
b
ν

)
xm−1

f(ζ)φ′(ζ) = 0,

φ′′(ζ) +
m+ 1

2

ν

D
f(ζ)φ′(ζ) = 0,
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φ′′(ζ) +
m+ 1

2
Lef(ζ)φ′(ζ) = 0. (3.29)

Now for converting the associated boundary conditions into the dimensionless

form, the following steps have been taken:

u = uw(x). (3.30)

u = bxmf ′(ζ).

uw(x) = axm.

From equation (3.30), we get

bxmf ′(ζ) = axm,

bf ′(ζ) = a, at ζ → 0.

f ′(0) =
a

b
,

f ′(0) = B. (3.31)

v = vw. (3.32)

v = −(bv)
1
2x

m−1
2

[
m+ 1

2
f(ζ) + ζ

m− 1

2
f ′(ζ)

]

From equation (3.32), we get

− (bv)
1
2x

m−1
2

[
m+ 1

2
f(ζ) + ζ

m− 1

2
f ′(ζ)

]
= vw at y → 0

− (bv)
1
2
m+ 1

2
x

m−1
2 f(ζ)− ζm− 1

2
f ′(ζ) = vw at ζ → 0

f(0) =
−2vw

(bν)
1
2 (m+ 1)x

m−1
2

,

f(0) = S. (3.33)

C = Cw. (3.34)

C = (Cw − C∞)φ(ζ) + C∞.

(Cw − C∞)φ(ζ) + C∞ = Cw,

(Cw − C∞)φ(ζ) = Cw − C∞.
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φ(ζ) =
Cw − C∞
Cw − C∞

,

φ(ζ) = 1, at ζ → 0

φ(0) = 1.

θ′(0) = 1.

u→ ue(x) = bxm.

bxmf ′(ζ)→ bxm at ζ →∞

f ′(ζ)→ 1. at ζ →∞

C → C∞,

φ(ζ)(Cw − C∞) + C∞ → C∞,

φ(ζ)(Cw − C∞)→ 0, at ζ →∞

φ(ζ)→ 0 at ζ →∞

θ(ζ)→ 0 at ζ →∞

The final dimensionless form of the governing model, is

f ′′′(ζ) +m(1− f ′2(ζ)) +
m+ 1

2
f(ζ)f ′′(ζ) + ξf ′′′(ζ)− ξ(f ′′(ζ)θ′(ζ)

+ f ′′′(ζ)θ(ζ)) +
3

2
(n− 1)We2f ′′2(ζ)f ′′′(ζ)M2(1− f ′(ζ)) = 0. (3.35)

θ′′(ζ) + Pr
m+ 1

2
f(ζ)θ′(ζ) + ε

(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
= 0. (3.36)

φ′′(ζ) +
m+ 1

2
Lef(ζ)φ′(ζ) = 0. (3.37)

The associated boundary conditions (3.6) shown as :

ζ → 0 : f(0) = S, f ′(0) = B, θ′(0) = −1, φ(0) = 1.

ζ →∞ : f ′(ζ) = 1, θ(ζ) = 0, φ(ζ) = 0.

Different parameters used in equations (3.35)-(3.37) are explained as follows:

We2 =
Γ2b3x3m−1

ν
, M2 =

σJ2

ρb
, ξ = h1(T∞ − Tw), ε = h2(T∞ − Tw),

S =
−2vw

(bν)
1
2 (m+ 1)x

m−1
2

, B =
a

b
, Pr =

µCp
k∗

, Le =
ν

D
.
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3.3 Method of Solution

The shooting technique has been used to compute the numerical solution of the or-

dinary differential equations (3.35)-(3.37). Equations (3.35) and (3.36) are solved

numerically and then f is used in equation (3.37). The following notations have

been used:

f = Y1, f
′ = Y ′1 = Y2,

f ′′ = Y ′2 = Y3, f
′′′ = Y ′3 .

θ = Y4, θ
′ = Y ′4 = Y5, θ

′′ = Y ′5 .

By using the above notations in equations (3.35) and (3.36), the following system

of ODEs is obtained:

Y ′1 = Y2, Y1(0) = S.

Y ′2 = Y3, Y2(0) = B.

Y ′3 =

(−m(1− Y 2
2 )− m+1

2
Y1Y3 + ξY3Y5 −M2(1− Y2)

1 + ξ − ξY4 + 3
2
(n− 1)We2Y 2

3

)
, Y3(0) = r.

Y ′4 = Y5, Y4(0) = q.

Y ′5 =

(−Prm+1
2
Y1Y5 − εY 2

5

1 + εY4

)
, Y5(0) = 1.

Missing conditions r and q assumed to satisfy the following relation:

Y2(ζ∞, r, q) = 1, Y4(ζ∞, r, q) = 0. (3.38)

The above set of equations can be solved by using Newtons method with the

following iterative formula:

r(n+1)

qn+1

 =

r(n)
q(n)

−
∂Y2∂r ∂Y2

∂q

∂Y4
∂r

∂Y4
∂q

−1 =

Y2 − 1

Y4

 (3.39)
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To execute the Newton’s method, we further apply the following notations:

∂Y1
∂r

= Y6,
∂Y2
∂r

= Y7,
∂Y3
∂r

= Y8,
∂Y4
∂r

= Y9,
∂Y5
∂r

= Y10.

∂Y1
∂q

= Y11,
∂Y2
∂q

= Y12,
∂Y3
∂q

= Y13,
∂Y4
∂q

= Y14,
∂Y5
∂q

= Y15.

As a result of these new notations, the Newton’s iterative scheme gets the form:

r(n+1)

qn+1

 =

r(n)
q(n)

−
Y7 Y12

Y9 Y14

−1 =

Y2 − 1

Y4

 (3.40)

Now differentiate the above system of five first order ODEs with respect to r and

q, we get ten more ODEs. Writing all these fifteen ODEs together, we have the

following IVP.

Y ′6 = Y7, Y6(0) = 0.

Y ′7 = Y8, Y7(0) = 0.

Y ′8 =

(
1

(1 + ξ − ξY4 + 3
2
(n− 1)We2Y 2

3 )2

)
((1 + ξ − ξY4 +

3

2
(n− 1)We2Y 2

3 )

(2mY2Y7 −
m+ 1

2
(Y1Y8 + Y3Y6) + ξ(Y3Y10 + Y5Y8) +M2Y7)

− (−m(1− Y 2
2 )− m+ 1

2
Y1Y3 + ξY3Y5 −M2(1− Y2))(−ξY9

+ 3(n− 1)We2Y3Y8)), Y8(0) = 1.

Y ′9 = Y10, Y9(0) = 0.

Y ′10 =
1

(1 + εY4)2
((1 + εY4)(−Pr

m+ 1

2
(Y1Y10 + Y5Y6)− 2εY5Y10)

− (−Prm+ 1

2
Y1Y5 − εY 2

5 )(εY9)), Y10(0) = 0.

Y ′11 = Y12, Y11(0) = 0.

Y ′12 = Y13, Y12(0) = 0.

Y ′13 =

(
1

(1 + ξ − ξY4 + 3
2
(n− 1)We2Y 2

3 )2

)
((1 + ξ − ξY4 +

3

2
(n− 1)

We2Y 2
3 )(2mY2Y12 −

m+ 1

2
(Y1Y13 + Y3Y11) + ξ(Y3Y15 + Y5Y13)

+M2Y12)− (−m(1− Y 2
2 )− m+ 1

2
Y1Y3 + ξY3Y5 −M2(1− Y2))
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(−ξY14 + 3(n− 1)We2Y3Y13)), Y13(0) = 0.

Y ′14 = Y15, Y14(0) = 1.

Y ′15 =

(
1

1 + εY4

)
((1 + εY4)(−Pr

m+ 1

2
(Y1Y15 + Y5Y11)− 2εY5Y15)

− (−Prm+ 1

2
Y1Y5 − εY 2

5 )(εY14)), Y15(0) = 0.

The stopping criteria for the Newton’s method is set as:

max {| Y2(ζ∞)− 1 |, | Y4(ζ∞) |} < ε,

where ε is a small positive number. For all the calculations in this chapter, we

have set ε=10−10.

φ = Z1, φ
′ = Z ′1 = Z2, φ

′′ = Z ′2.

By using the above notations in equation (3.37), the following system of ODEs is

obtained:

Z ′1 = Z2, Z1(0) = 1.

Z ′2 = −m+ 1

2
LefZ2, Z2(0) = Q.

The above IVP will be numerically solved by RK technique of order four. In the

above initial value problem, the missing condition Q satisfies the following relation:

Z1(ζ∞, Q) = 0.

To solve the above equation for Q, Newton’s method which has the following it-

erative scheme will be implemented.

Q(n+1) = Q(n) − Z1(ζ∞, Q)

Z ′1(ζ∞, Q)
.
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To incorporate Newton’s method, we further utilize the following notions:

∂Z1

∂Q
= Z3,

∂Z1

∂Q
= Z4.

As a result, the following IVP is obtained:

Z ′3 = Z4, Z3(0) = 0.

Z ′4 = −m+ 1

2
LefZ4, Z4(0) = 1.

The stopping criteria for the Newton’s method is set as:

| Z1(ζ∞, Q) |< ε.

3.4 Results and Discussion

The physical impact of significant parameters on the skin friction, Nusselt num-

ber and Sherwood number has been explained through graphs and tables. In the

present survey, the shooting method has been opted for reproducing the values of

(Rex)
1
2Cfx and (Rex)

−1
2 Nux. The results presented in Tables 3.1-3.5 illustrate the

impact of significant parameters on (Rex)
1
2Cfx and (Rex)

−1
2 Nux.

In Table 3.1, for the rising values of suction parameter S and stretching parameter

B = 0, (Rex)
1
2Cfx and (Rex)

−1
2 Nux are found to be increased. Furthermore, for

accelerating value of S with B = −3, (Rex)
1
2Cfx and (Rex)

−1
2 Nux are increased.

In Table 3.2, for the increasing the value of the power law index n with B = 2

, (Rex)
1
2Cfx and (Rex)

−1
2 Nux are increased. Furthermore, for accelerating value

of power law index n with B = −2, (Rex)
1
2Cfx and (Rex)

−1
2 Nux are found to be

decreased.

In Table 3.3, for the rising the value of nonlinearity parameter m with B = 0,

(Rex)
1
2Cfx and (Rex)

−1
2 Nux are increased. Furthermore, for accelerating value of

m with B = −3, (Rex)
1
2Cfx and (Rex)

−1
2 Nux are found to be increased.

In Table 3.4, for the increasing values of the Magnetic parameter M with B = 2,
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(Rex)
1
2Cfx and (Rex)

−1
2 Nux are decreased. Furthermore, for accelerating value of

M with B = −2, (Rex)
1
2Cfx and (Rex)

−1
2 Nux are increased.

In Table 3.5, for the rising values of Weissenberg number We with B = 2,

(Rex)
1
2Cfx and (Rex)

−1
2 Nux are found to be increased. Furthermore, for acceler-

ating value of We and B = −2, (Rex)
1
2Cfx and (Rex)

−1
2 Nux are decreased.

Figure 3.2 represents the influence of power law index n on the dimensionless ve-

locity profile f ′(ζ) in the presence of B. It is clearly shown that f ′(ζ) is increasing

function by expanding the values of n. In the case of stretching, the opposite

behavior has been observed.

Figure 3.3 illustrates the impact of suction parameter S on the dimensionless f ′(ζ).

It is observed that f ′(ζ) is increasing by rising the values of S.

Figure 3.4 displays the influence of M on the f ′(ζ). By increasing the values of M ,

f ′(ζ) is increased in the case of shrinking. In the case of stretching, the opposite

behavior has been observed.

Figure 3.5 delineates to show the impact of nonlinearity stretching parameter m on

f ′(ζ). By enhancing the values of m, f ′(ζ) is increasing in the case of stretching.

Figure 3.6 shows the impact of We on f ′(ζ). This graph indicates that with an

increment in the values of We, f ′(ζ) is increased in the case of stretching. In the

event of stretching, the opposite behavior has been noted.

Figure 3.7 represents the impact of viscous parameter ξ on the dimensionless ve-

locity profile f ′(ζ). It can be noted that f ′(ζ) is decreasing function by rising the

values of ξ .

Figure 3.8 delineates the impact of nonlinearity stretching parameter m on the

dimensionless temperature θ(ζ). Due to an increment in m, θ(ζ) is decreased.

Figure 3.9 delineates the impact of Pr on θ(ζ). It is clearly shown that θ(ζ) is

increasing by enhancing the values of Pr.

Figure 3.10 illustrates the effect of ξ on θ(ζ). It is clearly shown that θ(ζ) is in-

creasing by expanding the values of ξ.

Figure 3.11 shows the impact of Le on the dimensionless concentration φ(ζ). It is

observed that the concentration distribution is a decreasing function by increasing

the values of Le.
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Table 3.1: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters M = 0.5, n = 5, We = 0.3, ξ = 0.5, ε = 0.5, m = 2, P r = 0.7.

B S (Rex)
1
2Cfx (Rex)

−1
2 Nux

0 5.0 2.9020 4.8292

0 5.5 3.0122 5.3449

0 6.0 3.1178 5.8622

0 6.5 3.2191 6.3808

0 7.0 3.3163 6.9004

0 7.5 3.4098 7.4208

-3 5.0 4.6210 4.2457

-3 5.5 4.8563 4.8175

-3 6.0 5.0709 5.3808

-3 6.5 5.2688 5.9377

-3 7.0 5.4531 6.4897

-3 7.5 5.6258 7.0380

Table 3.2: Numerical results for (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters M = 0.5, s = 5, We = 0.3, ξ = 0.5, ε = 0.5, m = 2, P r = 0.7.

B n (Rex)
1
2Cfx (Rex)

−1
2 Nux

2 5 -3.0451 5.0573

2 6 -2.8827 5.0595

2 7 -2.7542 5.0613

2 8 -2.6485 5.0629

2 9 -2.5594 5.0643

-2 5 4.4331 4.4792

-2 6 4.1437 4.4692

-2 7 3.9193 4.4610

-2 8 3.7378 4.4542

-2 9 3.5863 4.4483
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Table 3.3: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters s = 5, n = 5, We = 0.3, ξ = 0.5, ε = 0.5, M = 0.5, P r = 0.7.

B m (Rex)
1
2Cfx (Rex)

−1
2 Nux

0 7.0 4.4003 13.5537

0 7.5 4.5076 14.4272

0 8.0 4.6105 15.3008

0 8.5 4.7105 16.3008

0 9.0 4.8047 17.0482

0 10 4.9856 18.7959

-3 7.0 6.8340 12.9560

-3 7.5 6.9964 13.8293

-3 8.0 7.1523 14.7027

-3 9.0 7.4474 16.4500

-3 10 7.7229 18.1976

Table 3.4: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters s = 5, n = 5, We = 0.3, ξ = 0.5, ε = 0.5, m = 2, P r = 0.7.

B M (Rex)
1
2Cfx (Rex)

−1
2 Nux

2 5.0 -3.6571 5.0618

2 6.5 -3.9449 5.0582

2 7.5 -4.1149 5.0882

2 8.5 -4.3294 5.1355

2 9.0 -4.4245 5.2195

2 10 -4.6130 5.3786

-2 5.0 5.9985 4.5607

-2 6.5 6.5953 4.5741

-2 7.5 6.8953 4.5841

-2 8.5 7.3509 4.5902

-2 9.0 7.5346 4.6573

-2 10 7.8846 4.6633
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Table 3.5: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters M = 0.5, n = 5, s = 0.3, ξ = 0.5, ε = 0.5, m = 2, P r = 0.7.

B We (Rex)
1
2Cfx (Rex)

−1
2 Nux

2 0.6 -2.1328 5.0715

2 1.0 -1.6140 5.0817

2 1.4 -1.3383 5.0877

2 1.8 -1.1625 5.0917

2 2.2 -1.0386 5.0946

2 2.2 -1.0056 5.0970

-2 0.6 2.8860 4.4186

-2 1.0 2.1173 4.3812

-2 1.4 1.8282 4.3660

-2 1.8 1.7016 4.3593

-2 2.2 1.6360 4.3558

-2 2.4 1.5560 4.3468
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M=0.5, =0.5

Figure 3.2: Impact of stretching parameter with power law index on the
dimensionless velocity profile.
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Figure 3.3: Impact of stretching parameter with suction parameter on the
dimensionless velocity profile.
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Figure 3.4: Impact of stretching parameter with magnetic parameter on the
dimensionless velocity profile.
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Figure 3.5: Impact of stretching parameter with nonlinearity stretching pa-
rameter on the dimensionless velocity profile.
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Figure 3.6: Impact of stretching parameter with Weissenberg number on the
dimensionless velocity profile.
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Figure 3.7: Influence of viscous parameter factor on dimensionless velocity
profile.
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Figure 3.8: Influence of nonlinearity stretching parameter factor on dimen-
sionless temperature profile.
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Figure 3.9: Influence of Prandtl number factor on dimensionless temperature
profile.
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Figure 3.10: : Influence of viscous parameter factor on dimensionless temper-
ature profile.
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Figure 3.11: Influence of Lewis number factor on dimensionless concentration
profile.
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Figure 3.12: Influence of thermal conductivity parameter factor on dimen-
sionless temperatureprofile.



Chapter 4

Effect of Thermal Radiation and

Chemical Reaction on MHD

Carreau Fluid Flow over a

Stretching Sheet

4.1 Introduction

This chapter contains the extension of the model [42] by considering thermal ra-

diation in energy equation. The chemical reaction are also included in the con-

centration equation. The governing coupled nonlinear PDEs are transformed into

ODEs by using the appropriate transformations. In order to solve the ODEs the

shooting method is implemented in MATLAB. At the end of this chapter is nu-

merical solution for various parameters is discussed for the dimensionless velocity,

temperature and concentration distributions. Investigation of obtained numerical

results are given through tables and graphs.

The set of equations describing the flow as follows.

∂u

∂x
+
∂v

∂y
= 0. (4.1)

39
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u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y

(
µ
∂u

∂y

)
+ 3ν

n− 1

2
Γ2

(
∂u

∂y

)2
∂2u

∂y2

+
σJ2

ρ
(ue − u) + ue

∂ue
∂x

. (4.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρCp

∂

∂y

(
k
∂T

∂y

)
− 1

ρCp

∂qr
∂y

. (4.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+Kr(C − C∞). (4.4)

The following similarity transformation.

θ(ζ) =
T − Tw
T∞ − Tw

, φ(ζ) =
C − C∞
Tw − T∞

,

ψ = (bv)
1
2x

m+1
2 f(ζ), ζ =

b

v

1
2

yx
m−1

2 .

 (4.5)

• u = bxmf ′(ζ). (4.6)

• v = −(bv)
1
2x

m−1
2

[
m+ 1

2
f(ζ) + ζ

m− 1

2
f ′(ζ)

]
. (4.7)

The detailed procedure for the conversion of (4.1)-(4.4) into the dimensionless

form has been described in the upcoming discussion.

• ∂u

∂x
=

(
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ) + bmxm−1f ′(ζ). (4.8)

• ∂v

∂y
= −bmxm−1f ′(ζ)−

(
b

3
2

ν
1
2

)
m− 1

2
x

3m−3
2 yf ′′(ζ). (4.9)

The detailed procedure for the conversion of (4.1) has been discussed in chapter

3.

∂u

∂x
+
∂v

∂y
= 0.

Now, for the momentum equation (4.2), dimensionless form we have discussed

complete procedure in chapter 3.

f ′′′(ζ) +m(1− f ′2(ζ)) +
m+ 1

2
f(ζ)f ′′(ζ) + ξf ′′′(ζ)
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− ξ(f ′′(ζ)θ′(ζ) + f ′′′(ζ)θ(ζ)) +
3

2
(n− 1)We2f ′′2(ζ)f ′′′(ζ)

M2(1− f ′(ζ)) = 0. (4.10)

To convert the equation (4.3) into ordinary differential form, the following proce-

dure has been carried out.

• ∂T

∂x
= (T∞ − Tw)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 yθ′(ζ).

• ∂T

∂y
= (T∞ − Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ).

• u
∂T

∂x
= (bxmf ′(ζ))((T∞ − Tw)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 yθ′(ζ)),

=

(
b

3
2

ν
1
2

)
m− 1

2
(T∞ − Tw)x

3m−3
2 yf ′(ζ)θ′(ζ). (4.11)

• v
∂T

∂y
= −(bν)

1
2x

m−1
2

[
m− 1

2
(ζ)f ′(ζ) +

m+ 1

2
f(ζ)

]
(T∞ − Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ),

= −bm+ 1

2
(T∞ − Tw)xm−1f(ζ)θ′(ζ)

− bm− 1

2

(
b

ν

) 1
2

(T∞ − Tw)xm−1yf ′(ζ)θ′(ζ),

= −bm+ 1

2
(T∞ − Tw)xm−1f(ζ)θ′(ζ)

− m− 1

2

(
b

3
2

ν
1
2

)
(T∞ − Tw)x

3m−3
2 yf ′(ζ)θ′(ζ). (4.12)

• k(T ) = k∗[N2 + h2(T − Tw)],

= k∗[N2 + h2((T∞ − Tw)θ(ζ) + Tm − Tw)],

= k∗[N2 + h2(T∞ − Tw)θ(ζ)].

• k(T )
∂T

∂y
= (k∗N2 + k∗h2(T∞ − Tw)θ(ζ))((T∞ − Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ)),

= k∗N2(T∞ − Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ)

+ k∗h2(T∞ − Tw)2
(
b

ν

) 1
2

x
m−1

2 θ(ζ)θ′(ζ).
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• ∂

∂y
(k(T )

∂T

∂y
) =

∂

∂y

(
k∗N2(T∞− Tw)

(
b

ν

) 1
2

x
m−1

2 θ′(ζ)

)

+
∂

∂y

(
k∗h2(T∞ − Tw)2

(
b

ν

) 1
2

x
m−1

2 θ(ζ)θ′(ζ)

)
,

= k∗N2(T∞ − Tw)

(
b

ν

)
xm−1θ′′(ζ) + k∗h2(T∞ − Tw)2(

b

ν

)
xm−1

(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
,

1

ρCp

∂

∂y
(k(T )

∂T

∂y
) = k∗N2(T∞ − Tw)

(
b

ν

)
xm−1θ′′(ζ) + k∗h2(T∞ − Tw)2(

b

ν

)
xm−1

(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
. (4.13)

• ∂qr
∂y

=
16σ∗T 3

0

3K∗
∂2T

∂y2
.

• ∂2T

∂y2
=

∂2

∂y2
((T∞ − Tw)θ(ζ) + Tw),

= (T∞ − Tw)θ′′(ζ)

(
b

ν

)
xm−1,

= (T∞ − Tw)

(
b

ν

)
xm−1θ′′(ζ).

• 1

ρCp

∂qr
∂y

=
1

ρCp

16σ∗T 3
0

3k∗1
(T∞ − Tw)

(
b

ν

)
xm−1θ′′(ζ). (4.14)

Using equations (4.11)-(4.14),

(
b

3
2

ν
1
2

)
m− 1

2
(T∞ − Tw)x

3m−3
2 yf ′(ζ)θ′(ζ)− bm+ 1

2
(T∞ − Tw)xm−1f(ζ)θ′(ζ)

− m− 1

2

(
b

3
2

ν
1
2

)
(T∞ − Tw)x

3m−3
2 yf ′(ζ)θ′(ζ) =

1

ρCp
k∗N2(T∞ − Tw)

(
b

ν

)
xm−1θ′′(ζ) +

1

ρCp
k∗h2(T∞ − Tw)2

(
b

ν

)
xm−1

(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
− 1

ρCp

16σ∗T 3
0

3k∗1
(T∞ − Tw)

b

ν
xm−1θ′′(ζ),

− bm+ 1

2
(T∞ − Tw)xm−1f(η)θ′(ζ) =

1

ρCp
k∗N2(T∞ − Tw)

(
b

ν

)
xm−1θ′′(ζ)

+
1

ρCp
k∗h2(T∞ − Tw)2

(
b

ν

)
xm−1

(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
,

− 1

ρCp

16σ∗T 3
0

3k∗1
(T∞ − Tw)

b

ν
xm−1θ′′(ζ),
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θ′′(ζ) +
m+ 1

2

ρCpν

k1 − 16σ∗T3
0

3k∗

f(ζ)θ′(ζ) +
h2

k1 − 16σ∗T3
0

3k∗

(T∞ − Tw)
(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
= 0,

θ′′(ζ) +
µCp

k∗ − 16σ∗T3
0

3k∗1

m+ 1

2
f(ζ)θ′(ζ) +

h2

k∗ − 16σ∗T3
0

3k∗1

(T∞ − Tw)
(
θ(ζ)θ′′(ζ) + θ′2(ζ)

)
= 0,

θ′′(ζ) +
m+ 1

2

Cpµ

k1(1− 16σ∗T 3
0

3k∗k1
)
f(ζ)θ′(ζ)

+
ε

1− 16σ∗T 3
0

3k∗k1

(θ(ζ)θ′′(ζ) + θ′2(ζ)) = 0,

θ′′(ζ) +
Prm+1

2

1− 4
3
R
f(ζ)θ′(ζ) +

ε

1− 4
3
R

(θ(ζ)θ′′(ζ) + θ′2(ζ)) = 0. (4.15)

The dimensionless form of (4.4), the complete derivations has been discussed be-

low:

• φ(ζ) =
C − C∞
Cw − C∞

.

• C = (Cw − C∞)φ(ζ) + C∞.

• ∂C

∂x
=

∂

∂x
((Cw − C∞)φ(ζ) + C∞) ,

= (Cw − C∞)φ′(ζ)

(
b

ν

) 1
2

y
m− 1

2
x

m−3
2 ,

= (Cw − C∞)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 yφ′(ζ).

• u
∂C

∂x
= (bxmf ′(ζ))(Cw − C∞)

(
b

ν

) 1
2 m− 1

2
x

m−3
2 yφ′(ζ),

= (Cw − C∞)
m− 1

2

(
b

3
2

ν
1
2

)
x

3m−3
2 yf ′(ζ)φ′(ζ). (4.16)

• ∂C

∂y
=

∂

∂y
((Cw − C∞)φ(ζ) + C∞),

= (Cw − C∞)φ′′(ζ)

(
b

ν

)
xm−1,

= (Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ).

• v
∂C

∂y
= −(bν)

1
2x

m−1
2

[
m− 1

2
(ζ)f ′(ζ) +

m+ 1

2
f(ζ)

]
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(Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ),

= −b(Cw − C∞)
m+ 1

2
xm−1f(ζ)φ′(ζ)

− (Cw − C∞)
m− 1

2

(
b

3
2

ν
1
2

)
x

3m−3
2 yf ′(ζ)φ′(ζ). (4.17)

• ∂2C

∂y2
= (Cw − C∞)φ′′(ζ)

(
b

ν

)
xm−1,

= (Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ).

• D
∂2C

∂y2
= D(Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ). (4.18)

• Kr(C − C∞) = Kr(Cw − C∞)φ(ζ) + C∞ − C∞,

= Kr(Cw − C∞)φ(ζ). (4.19)

Using equations (4.16)-(4.19),

(Cw − C∞)
m− 1

2

(
b

3
2

ν
1
2

)
x

3m−3
2 yf ′(ζ)φ′(ζ)− b(Cw − C∞)

m+ 1

2
xm−1f(ζ)φ′(ζ)

− (Cw − C∞)
m− 1

2

(
b

3
2

ν
1
2

)
x

3m−3
2 yf ′(ζ)φ′(ζ)

= D(Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ) +Kr(Cw − C∞)φ(ζ)

− b(Cw − C∞)
m+ 1

2
xm−1f(ζ)φ′(ζ) = D(Cw − C∞)

(
b

ν

)
xm−1φ′′(ζ)

+Kr(Cw − C∞)φ(ζ)

φ′′(ζ) +
b(Cw − C∞)m+1

2
xm−1

D(Cw − C∞)
(
b
ν

)
xm−1

f(ζ)φ′(ζ) +
Kr(Cw − C∞)

D(Cw − C∞)
(
b
ν

)
xm−1

φ(ζ) = 0,

φ′′(ζ) +
m+ 1

2

ν

D
f(ζ)φ′(ζ) +

ν

D

Kr

bxm−1
φ(ζ) = 0,

φ′′(ζ) +
m+ 1

2
Lef(ζ)φ′(ζ) +

2Kr(m+ 1)

2b(m+ 1)xm−1
Leφ(ζ) = 0,

φ′′(ζ) +
m+ 1

2
Lef(ζ)φ′(ζ) +

m+ 1

2
γLeφ(ζ) = 0. (4.20)

• u = uw(x). (4.21)

u = bxmf ′(ζ).

uw(x) = axm.



MHD Carreau Fluid Flow of Thermal Radiation 45

Consider the equation (4.21)

bxmf ′(ζ) = axm,

bf ′(ζ) = a,

f ′(0) =
a

b
, as ζ → 0.

f ′(0) = B. (4.22)

• v = vw. (4.23)

v = −(bv)
1
2x

m−1
2

[
m+ 1

2
f(η) + ζ

m− 1

2
f ′(ζ)

]
.

From equation (4.23), we get

− (bv)
1
2x

m−1
2

[
m+ 1

2
f(ζ) + ζ

m− 1

2
f ′(ζ)

]
= vw,

− (bv)
1
2
m+ 1

2
x

m−1
2 f(ζ) + ζ

m− 1

2
f ′(ζ) = vw, as y → 0.

f(0) =
−2vw

(bν)
1
2 (m+ 1)x

m−1
2

, as ζ → 0.

f(0) = S. (4.24)

• C = Cw. (4.25)

C = (Cw − C∞) + C∞,

(Cw − C∞)φ(ζ) + C∞ = Cw,

(Cw − C∞)φ(ζ) = Cw − C∞,

φ(ζ) =
Cw − C∞
Cw − C∞

,

φ(ζ) = 1, as ζ → 0.

φ(0) = 1. (4.26)

θ′(0) = 1. (4.27)

• u→ ue(x) = bxm.

bxmf ′(ζ)→ bxm, as ζ →∞.

f ′(∞)→ 1.

• C → C∞
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φ(ζ)(Cw − C∞) + C∞ → C∞.

φ(ζ)(Cw − C∞)→ 0, as ζ →∞.

φ(∞)→ 0, as ζ →∞.

θ(∞)→ 0, as ζ →∞.

The final dimensionless form of the governing model, is

f ′′′(ζ) +m(1− f ′2(ζ)) +
m+ 1

2
f(ζ)f ′′(ζ) + ξf ′′′(ζ)

− ξ(f ′′(ζ)θ′(ζ) + f ′′′(ζ)θ(ζ)) +
3

2
(n− 1)We2f ′′2(ζ)f ′′′(ζ)

M2(1− f ′) = 0. (4.28)

θ′′(ζ) +
Prm+1

2

1− 4
3
R
f(ζ)θ′(ζ) +

ε

1− 4
3
R

(θ(ζ)θ′′(ζ) + θ′2(ζ)) = 0. (4.29)

φ′′(ζ) +
m+ 1

2
Lef(ζ)φ′(ζ) +

m+ 1

2
γLeφ(ζ) = 0. (4.30)

Different parameter used in equations (4.28)-(4.30) are formulated as follows:

We2 =
Γ2b3x3m−1

ν
, M2 =

σJ2

ρb
, ξ = h1(T∞ − Tw), ε = h2(T∞ − Tw),

S =
−2vw

(bν)
1
2 (m+ 1)x

m−1
2

, B =
a

b
, Pr =

µCp
k∗

, Le =
ν

D
,

R =
4σ∗T 3

0

k∗k1
, γ =

2Kr

b(m+ 1)xm−1
.

4.2 Method of Solution

The shooting method has been used to solve the ordinary differential equations

(4.28)-(4.30). Equations (4.28) and (4.29) are solved numerically and then f is

used in equation (4.30).The following notations have been considered:

f = Z1, f
′ = Z ′1 = Z2,

f ′′ = Z ′2 = Z3, f
′′′ = Z ′3.

θ = Z4, θ
′ = Z ′4 = Z5, θ

′′ = Z ′5.
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By using the above notations in equation (4.28)-(4.29), the following scheme of

ODEs is attained:

Z ′1 = Z2, Z1(0) = S.

Z ′2 = Z3, Z2(0) = B.

Z ′3 =
−m(1− Z2

2)− m+1
2
Z1Z3 + ξZ3Z5 −M2(1− Z2)

1 + ξ − ξZ4 + 3
2
(n− 1)We2Z2

3

, Z3(0) = r.

Z ′4 = Z5, Z4(0) = q.

Z ′5 =
(1− 4

3
R)
(
−Prm+1

2
Z1Z5 − εZ2

5

)
1 + εZ4

, Z5(0) = 1.

The above IVP will be numerically determined by RK technique of order four. In

the above initial value problem, the missing conditions r and q satisfy the following

relation:

Z2(ζ∞, r, q) = 1, Z4(ζ∞, r, q) = 0.

By using Newton’s method which has the following iterative scheme:

r(n+1)

qn+1

 =

r(n)
q(n)

−
∂Z2

∂r
∂Z2

∂q

∂Z4

∂r
∂Z4

∂q

−1 =

Z2 − 1

Z4

 (4.31)

Now, introduce the following notations:

∂Z1

∂r
= Z6,

∂Z2

∂r
= Z7,

∂Z3

∂r
= Z8,

∂Z4

∂r
= Z9,

∂Z5

∂r
= Z10.

∂Z1

∂q
= Z11,

∂Z2

∂q
= Z12,

∂Z3

∂q
= Z13,

∂Z4

∂q
= Z14,

∂Z5

∂q
= Z15.

As a result of these new notations, the Newton’s iterative scheme gets the form:

r(n+1)

qn+1

 =

r(n)
q(n)

−
Z7 Z12

Z9 Z14

−1 =

Z2 − 1

Z4

 (4.32)



MHD Carreau Fluid Flow of Thermal Radiation 48

Now differentiate the above system of five first order ODEs with respect to r and

q. Writing all these ten ODEs together, we have the following IVP.

Z ′6 = Z7, Z6(0) = 0.

Z ′7 = Z8, Z7(0) = 0.

Z ′8 =
1

(1 + ξ − ξZ4 + 3
2
(n− 1)We2Z2

3)2
((1 + ξ − ξZ4 +

3

2
(n− 1)We2Z2

3)

(2mZ2Z7 −
m+ 1

2
(Z1Z8 + Z3Z6)ξ(Z3Z10 + Z5Z8) +M2Z7)− (−m(1− Z2

2)

− m+ 1

2
Z1Z3 + ξZ3Z5 −M2(1− Z2))(−ξZ9 + 3(n− 1)We2Z3Z8)),

Z8(0) = 1.

Z ′9 = Z10, Z9(0) = 0.

Z ′10 =
1

1 + εZ4

(1 + εZ4)(1−
4

3
R)

(
− Prm+ 1

2
(Z1Z10 + Z5Z6)− 2εZ5Z10

)

− (1− 4

3
R)

(
− Prm+ 1

2
Z1Z5 − εZ2

5

)
(εZ9), Z10(0) = 0.

Z ′11 = Z12, Z11(0) = 0.

Z ′12 = Z13, Z12(0) = 0.

Z ′13 =

(
1

1 + ξ − ξZ4 + 3
2
(n− 1)We2Z2

3

)
((1 + ξ − ξZ4 +

3

2
(n− 1)We2Z2

3)

(2mZ2Z12 −
m+ 1

2
(Z1Z13 + Z3Z11) + ξ(Z3Z15 + Z5Z13) +M2Z12)

− (−m(1− Z2
2)− m+ 1

2
Z1Z3 + ξZ3Z5 −M2(1− Z2))(−ξZ14

+ 3(n− 1)We2Z3Z13)), Z13(0) = 0.

Z ′14 = Z15, Z14(0) = 1.

Z ′15 =
1

1 + εZ4

(1 + εZ4)(1−
4

3
R)

(
− Prm+ 1

2
(Z1Z15 + Z5Z11)− 2εZ5Z15

)

− (1− 4

3
R)

(
− Prm+ 1

2
Z1Z5 − εZ2

5

)
(εZ14), Z15(0) = 0.

The threshold for the Newton’s method is set as,

max {| Z2(ζ∞)− 1 |, | Z4(ζ∞) |} < ε
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The equation (4.30) will be numerically solved by using shooting method. The

following notions has been used:

φ = Y1, φ
′ = Y ′1 = Y2, φ

′′ = Y ′2 .

By using the above notations in equations (4.30), the following system of ODEs

is obtained:

Y ′1 = Y2, Y1(0) = 1.

Y ′2 = −m+ 1

2
LefY2 −

m+ 1

2
γLeY1, Y2(0) = Q.

The above IVP will be numerically determined by RK technique of order four.

In the above initial value problem, the missing condition Q satisfy the following

relation:

Z1(ζ∞, Q) = 0.

(4.33)

Newton method which has the following iterative scheme:

Q(n+1) = Q(n) − G(ζ)

G′(ζ)
, where G(ζ) = Z1(ζ∞, Q) = 0.

To incorporate Newton’s method, we further utilize the following notions:

∂Y1
∂Q

= Y3,
∂Y1
∂Q

= Y4.

Now differentiate above system of two first order ODEs with respect to Q,

Y ′3 = Y4, Y3(0) = 0.

Y ′4 = −m+ 1

2
LeC1Y4 −

m+ 1

2
γLeY3, Y4(0) = 1.
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The stopping criteria for the Newton’s method is set as:

| Z1(ζ∞, Q) |< ε.

4.3 Results and Discussion

The principle object is about to examine the impact of some different parame-

ters against the velocity, temperature and concentration distribution. The impact

of different factors like nonlinearity parameter m, magnetic parameter M , Weis-

senberg number We, thermal radiation R and chemical reaction Kr is observed

graphically. Numerical outcomes of the Nusselt number (Rex)
−1
2 Nux and skin

friction (Rex)
1
2Cfx for the distinct values of some fixed parameters are shown in

Tables 4.1-4.5.

Figure 4.1 represents the influence of n on the dimensionless f ′(ζ) in the presence

of B. It is clearly shown that the f ′(ζ) is increased by enhancing the value of n.

In the case of stretching, the opposite behavior has been observed.

Figure 4.2 illustrate the impact of suction parameter S on the dimensionless f ′(ζ).

It is clearly shown that the f ′(ζ) is increased by enhancing the value of S.

Figure 4.3 delineated to show the impact of nonlinearity stretching parameter m

on f ′(ζ). By enhancing the value of m, the f ′(ζ) is increased in the case of stretch-

ing.

Figure 4.4 shows the impact of We on f ′(ζ). This graph indicates that an incre-

ment in the value of We, the f ′(ζ) is increased in the case of stretching. In the

event of stretching, the opposite behavior has been noted.

Figure 4.5 represents the impact of viscous parameter ξ on f ′(ζ). It can be noted

that, the f ′(ζ) is decreased by increasing the value of ξ in the case of stretching.

Figure 4.6 delineated to show the impact of m on θ(ζ). The increment of m, the

θ(ζ) is decreased.

Figure 4.7 represents the influence of Pr on the dimensionless θ(ζ). It is clearly

observed that the θ(ζ) is increased by enhancing the value of Pr, the thermal
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boundary layer thickness increases for both shear thickening and shear thinning

fluids.

Figure 4.8 illustrate the effect of viscous parameter ξ on θ(ζ). It is clearly shown

that the θ(ζ) is increased by enhancing the value of ξ.

Figure 4.9 displays the impact of Le on φ(ζ). Concentration profile decelerate

for the boosting values of Le thus we have get a small molecular diffusivity and

thermal boundary layer.

Figure 4.10 delineated to show the impact of chemical reaction parameter γ on

the dimensionless φ(ζ). The increment of γ, φ(ζ) is decreased.

Table 4.1: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters M = 0.5, n = 5, We = 0.3, ξ = 0.5, ε = 0.5, m = 2, P r =
0.7, R = −0.2.

B S (Rex)
1
2Cfx (Rex)

−1
2 Nux

0 5.0 2.9150 3.7910

0 5.5 3.0239 4.1949

0 6.0 3.1283 4.6006

0 6.5 3.2286 5.0078

0 7.0 3.3250 5.4160

0 7.5 3.4283 5.8006

0 8.0 3.5286 6.2078

0 8.5 3.6250 6.6160

0 9 3.7240 7.1160

-3 5.0 4.6336 3.2377

-3 5.5 4.8673 3.6922

-3 6.0 5.0804 4.1397

-3 6.5 5.2772 4.5819

-3 7.0 5.4604 5.0202

-3 7.5 5.6150 5.5910

-3 8.0 5.8336 6.0377

-3 8.5 6.0673 6.5922
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Table 4.2: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parametersM = 0.5, s = 5, We = 0.3, ξ = 0.5, ε = 0.5, m = 2, P r = 0.7, R =
−0.2.

B n (Rex)
1
2Cfx (Rex)

−1
2 Nux

2 5 -3.0564 3.9932

2 6 -2.8924 3.9954

2 7 -2.7628 3.9973

2 8 -2.6564 3.9989

2 9 -2.5666 4.0004

-2 5 4.4452 3.4641

-2 6 4.1541 3.4529

-2 7 3.9285 3.4436

-2 8 3.7460 3.4358

-2 9 3.5939 3.4290

Table 4.3: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters s = 5, n = 5, We = 0.3, ξ = 0.5, ε = 0.5, M = 0.5, P r = 0.7, R =
−0.2.

B m (Rex)
1
2Cfx (Rex)

−1
2 Nux

0 7.0 4.4039 10.6706

0 7.5 4.5109 11.3597

0 8.0 4.6136 12.0488

0 8.5 4.7236 13.0388

0 9.0 4.8074 13.4275

0 10 4.9880 14.8064

-3 7.0 6.8370 10.0829

-3 7.5 6.9991 10.7710

-3 8.0 7.1548 11.4594

-3 8.5 7.2048 12.4194

-3 9.0 7.4495 12.8367

-3 10 7.7248 14.2147
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Table 4.4: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters s = 5, n = 5, We = 0.3, ξ = 0.5, ε = 0.5, m = 2, P r = 0.7, R =
−0.2.

B M (Rex)
1
2Cfx (Rex)

−1
2 Nux

2 5.0 -3.6655 4.0224

2 6.5 -3.9524 4.0190

2 7.5 -4.0324 4.0590

2 8.5 -4.3354 4.1607

2 9.0 -4.4299 4.2827

2 10 -4.6175 4.4957

-2 5.0 6.0054 3.5956

-2 6.5 6.6013 3.6081

-2 7.5 6.9013 3.6181

-2 8.5 7.3560 3.6231

-2 9.0 7.5392 3.7326

-2 10 7.8889 3.7378

Table 4.5: Numerical outcomes of (Rex)
1
2Cfx and (Rex)

−1
2 Nux for some fixed

parameters M = 0.5, n = 5, s = 0.3, ξ = 0.5, ε = 0.5, m = 2, P r = 0.7, R =
−0.2.

B We (Rex)
1
2Cfx (Rex)

−1
2 Nux

2 0.6 -2.1373 4.0081

2 1.0 -1.6163 4.0192

2 1.4 -1.3397 4.0260

2 1.8 -1.1635 4.0305

2 2.2 -1.0394 4.0339

-2 0.6 2.8912 3.3964

-2 1.0 2.1198 3.3520

-2 1.4 1.8296 3.3339

-2 1.8 1.7025 3.3259

-2 2.2 1.6366 3.3217
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Figure 4.1: Impact of stretching parameter with power law index on the
dimensionless velocity profile.
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Figure 4.2: Impact of stretching parameter with suction parameter on the
dimensionless velocity profile.
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Figure 4.3: Impact of stretching parameter with nonlinearity stretching pa-
rameter on the dimensionless velocity profile.
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Figure 4.4: Impact of stretching parameter with Weissenberg number on the
dimensionless velocity profile.
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Figure 4.5: Influence of viscous parameter factor on dimensionless velocity
profile.
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Figure 4.6: Influence of nonlinearity stretching parameter factor on dimen-
sionless temperature profile.
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Figure 4.7: Influence of Prandtl number factor on dimensionless temperature
profile
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Figure 4.8: Influence of viscous parameter factor on dimensionless tempera-
ture profile.
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Figure 4.9: Influence of Lewis number factor on dimensionless concentration
profile.
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Figure 4.10: Influence of chemical reaction factor on dimensionless concen-
tration profile.



Chapter 5

Conclusion

This research work represents the 2-D boundary layer flow of MHD Carreau fluid

flow over a stretching sheet with the variable of viscosity, heat transfer and thermal

conductivity. Furthermore, the impacts of magnetic parameter, suction parame-

ter, nonlinearity parameter and Weissenberg number are discussed. The obtained

mathematical model contains the nonlinear PDEs of continuity equation, momen-

tum equation, energy equation and concentration equation. Furthermore these

PDEs are converted into a system of nonlinear ODEs by applying the similarity

transformation. For the numerical results of ODEs, shooting technique is utilized.

The dimensionless velocity behavior, temperature distribution, skin friction, Nus-

selt number and sherwood number have been analyzed for different values of vari-

ous parameters. The numerical results are explained through different figures and

tables.

• For the enhancing values of We and n, the velocity distribution is increased.

In case of stretching, the opposite behavior has been obsered.

• The temperature profile is decreased due to the increasing values of nonlin-

earity stretching parameter.

• A decrement is noticed in concentration profile due to the accelerating values

of Lewis number.

• A increment is noticed in the temperature profile by enhancing values of

Prandtl number.

59
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• The increasing values of viscous parameter cause an enhanement in temper-

ature distribution.

• A decrement is noticed in concentration profile due to the accelerating values

of chemical reaction parameter.
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